Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II.

Identifieur interne : 000202 ( Main/Exploration ); précédent : 000201; suivant : 000203

A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II.

Auteurs : José G. García-Cerdán [États-Unis] ; Ariel L. Furst [États-Unis] ; Kent L. Mcdonald [États-Unis] ; Danja Schünemann [Allemagne] ; Matthew B. Francis [États-Unis] ; Krishna K. Niyogi [États-Unis]

Source :

RBID : pubmed:31358635

Descripteurs français

English descriptors

Abstract

Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559 Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.

DOI: 10.1073/pnas.1903314116
PubMed: 31358635
PubMed Central: PMC6697814


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II.</title>
<author>
<name sortKey="Garcia Cerdan, Jose G" sort="Garcia Cerdan, Jose G" uniqKey="Garcia Cerdan J" first="José G" last="García-Cerdán">José G. García-Cerdán</name>
<affiliation wicri:level="2">
<nlm:affiliation>Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; jggarcia.cerdan@gmail.com niyogi@berkeley.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Howard Hughes Medical Institute, University of California, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Plant and Microbial Biology, University of California, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Furst, Ariel L" sort="Furst, Ariel L" uniqKey="Furst A" first="Ariel L" last="Furst">Ariel L. Furst</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of California, Berkeley, CA 94720-1460.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Chemistry, University of California, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mcdonald, Kent L" sort="Mcdonald, Kent L" uniqKey="Mcdonald K" first="Kent L" last="Mcdonald">Kent L. Mcdonald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Electron Microscope Laboratory, University of California, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Electron Microscope Laboratory, University of California, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Schunemann, Danja" sort="Schunemann, Danja" uniqKey="Schunemann D" first="Danja" last="Schünemann">Danja Schünemann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum</wicri:regionArea>
<wicri:noRegion>44780 Bochum</wicri:noRegion>
<wicri:noRegion>44780 Bochum</wicri:noRegion>
<wicri:noRegion>44780 Bochum</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Francis, Matthew B" sort="Francis, Matthew B" uniqKey="Francis M" first="Matthew B" last="Francis">Matthew B. Francis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of California, Berkeley, CA 94720-1460.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Chemistry, University of California, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-1460.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Niyogi, Krishna K" sort="Niyogi, Krishna K" uniqKey="Niyogi K" first="Krishna K" last="Niyogi">Krishna K. Niyogi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; jggarcia.cerdan@gmail.com niyogi@berkeley.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Howard Hughes Medical Institute, University of California, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Plant and Microbial Biology, University of California, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31358635</idno>
<idno type="pmid">31358635</idno>
<idno type="doi">10.1073/pnas.1903314116</idno>
<idno type="pmc">PMC6697814</idno>
<idno type="wicri:Area/Main/Corpus">000116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000116</idno>
<idno type="wicri:Area/Main/Curation">000116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000116</idno>
<idno type="wicri:Area/Main/Exploration">000116</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II.</title>
<author>
<name sortKey="Garcia Cerdan, Jose G" sort="Garcia Cerdan, Jose G" uniqKey="Garcia Cerdan J" first="José G" last="García-Cerdán">José G. García-Cerdán</name>
<affiliation wicri:level="2">
<nlm:affiliation>Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; jggarcia.cerdan@gmail.com niyogi@berkeley.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Howard Hughes Medical Institute, University of California, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Plant and Microbial Biology, University of California, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Furst, Ariel L" sort="Furst, Ariel L" uniqKey="Furst A" first="Ariel L" last="Furst">Ariel L. Furst</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of California, Berkeley, CA 94720-1460.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Chemistry, University of California, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mcdonald, Kent L" sort="Mcdonald, Kent L" uniqKey="Mcdonald K" first="Kent L" last="Mcdonald">Kent L. Mcdonald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Electron Microscope Laboratory, University of California, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Electron Microscope Laboratory, University of California, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Schunemann, Danja" sort="Schunemann, Danja" uniqKey="Schunemann D" first="Danja" last="Schünemann">Danja Schünemann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum</wicri:regionArea>
<wicri:noRegion>44780 Bochum</wicri:noRegion>
<wicri:noRegion>44780 Bochum</wicri:noRegion>
<wicri:noRegion>44780 Bochum</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Francis, Matthew B" sort="Francis, Matthew B" uniqKey="Francis M" first="Matthew B" last="Francis">Matthew B. Francis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of California, Berkeley, CA 94720-1460.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Chemistry, University of California, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-1460.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Niyogi, Krishna K" sort="Niyogi, Krishna K" uniqKey="Niyogi K" first="Krishna K" last="Niyogi">Krishna K. Niyogi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; jggarcia.cerdan@gmail.com niyogi@berkeley.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Howard Hughes Medical Institute, University of California, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Plant and Microbial Biology, University of California, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (drug effects)</term>
<term>Arabidopsis (metabolism)</term>
<term>Chlamydomonas reinhardtii (drug effects)</term>
<term>Chlamydomonas reinhardtii (metabolism)</term>
<term>Electron Transport (drug effects)</term>
<term>Intracellular Membranes (drug effects)</term>
<term>Intracellular Membranes (metabolism)</term>
<term>Intracellular Membranes (ultrastructure)</term>
<term>Iron (pharmacology)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Photosystem II Protein Complex (metabolism)</term>
<term>Protein Domains (MeSH)</term>
<term>Rubredoxins (chemistry)</term>
<term>Rubredoxins (metabolism)</term>
<term>Thylakoids (drug effects)</term>
<term>Thylakoids (metabolism)</term>
<term>Thylakoids (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (effets des médicaments et des substances chimiques)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Chlamydomonas reinhardtii (effets des médicaments et des substances chimiques)</term>
<term>Chlamydomonas reinhardtii (métabolisme)</term>
<term>Complexe protéique du photosystème II (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Fer (pharmacologie)</term>
<term>Membranes intracellulaires (effets des médicaments et des substances chimiques)</term>
<term>Membranes intracellulaires (métabolisme)</term>
<term>Membranes intracellulaires (ultrastructure)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Rubrédoxines (composition chimique)</term>
<term>Rubrédoxines (métabolisme)</term>
<term>Thylacoïdes (effets des médicaments et des substances chimiques)</term>
<term>Thylacoïdes (métabolisme)</term>
<term>Thylacoïdes (ultrastructure)</term>
<term>Transport d'électrons (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Rubredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Photosystem II Protein Complex</term>
<term>Rubredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Rubrédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Arabidopsis</term>
<term>Chlamydomonas reinhardtii</term>
<term>Electron Transport</term>
<term>Intracellular Membranes</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chlamydomonas reinhardtii</term>
<term>Membranes intracellulaires</term>
<term>Thylacoïdes</term>
<term>Transport d'électrons</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Chlamydomonas reinhardtii</term>
<term>Intracellular Membranes</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chlamydomonas reinhardtii</term>
<term>Complexe protéique du photosystème II</term>
<term>Membranes intracellulaires</term>
<term>Rubrédoxines</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Fer</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Intracellular Membranes</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Biological</term>
<term>Oxidation-Reduction</term>
<term>Protein Domains</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Membranes intracellulaires</term>
<term>Modèles biologiques</term>
<term>Oxydoréduction</term>
<term>Thylacoïdes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome
<i>b</i>
<sub>559</sub>
Complementation of the
<i>Chlamydomonas reinhardtii</i>
(hereafter
<i>Chlamydomonas</i>
) RBD1-deficient
<i>2pac</i>
mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome
<i>c</i>
in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP
<sup>+</sup>
reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome
<i>b</i>
<sub>559</sub>
, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31358635</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>116</Volume>
<Issue>33</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II.</ArticleTitle>
<Pagination>
<MedlinePgn>16631-16640</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1903314116</ELocationID>
<Abstract>
<AbstractText>Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome
<i>b</i>
<sub>559</sub>
Complementation of the
<i>Chlamydomonas reinhardtii</i>
(hereafter
<i>Chlamydomonas</i>
) RBD1-deficient
<i>2pac</i>
mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome
<i>c</i>
in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP
<sup>+</sup>
reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome
<i>b</i>
<sub>559</sub>
, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.</AbstractText>
<CopyrightInformation>Copyright © 2019 the Author(s). Published by PNAS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>García-Cerdán</LastName>
<ForeName>José G</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; jggarcia.cerdan@gmail.com niyogi@berkeley.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Furst</LastName>
<ForeName>Ariel L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of California, Berkeley, CA 94720-1460.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McDonald</LastName>
<ForeName>Kent L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Electron Microscope Laboratory, University of California, Berkeley, CA 94720.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schünemann</LastName>
<ForeName>Danja</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Francis</LastName>
<ForeName>Matthew B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of California, Berkeley, CA 94720-1460.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-1460.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niyogi</LastName>
<ForeName>Krishna K</ForeName>
<Initials>KK</Initials>
<Identifier Source="ORCID">0000-0001-7229-2071</Identifier>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; jggarcia.cerdan@gmail.com niyogi@berkeley.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Acronym>HHMI</Acronym>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012416">Rubredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016825" MajorTopicYN="N">Chlamydomonas reinhardtii</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007425" MajorTopicYN="N">Intracellular Membranes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012416" MajorTopicYN="N">Rubredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020524" MajorTopicYN="N">Thylakoids</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Chlamydomonas</Keyword>
<Keyword MajorTopicYN="Y">photosynthesis</Keyword>
<Keyword MajorTopicYN="Y">photosystem II</Keyword>
<Keyword MajorTopicYN="Y">rubredoxin</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31358635</ArticleId>
<ArticleId IdType="pii">1903314116</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1903314116</ArticleId>
<ArticleId IdType="pmc">PMC6697814</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 1999 Apr;4(4):130-135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 8;286(5438):306-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Apr;12(4):559-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 29;275(39):30058-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10878021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):1037-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 23;276(8):5483-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11056177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 May 29;40(21):6431-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11371206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):31986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Oct 15;20(20):5587-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Oct 17;277(1-2):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1408-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Aug;269(16):3912-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12180968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2003 Jan;8(1-2):206-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12459916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Jan;44(1):76-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12552150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 7;299(5612):1572-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12624266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2004 Jan;271(1):96-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14686923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 29;279(44):45417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2004 Oct;9(7):839-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):48620-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 May 15;388(Pt 1):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15638811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2003;76(1-3):343-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol Sci. 2005 Dec;4(12):950-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1960 Jan;46(1):83-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16590601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Jan;84(1):109-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):901-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:521-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Sep 15;406(3):415-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Dec 15;246(4936):1503-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17756009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Oct 16;581(25):4983-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17910960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 15;283(33):22390-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2008 Oct-Dec;98(1-3):189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Jul;10(7):1619-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1904816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Feb;50(2):191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19112079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Oct;10(10):2757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1915260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Dec;21(12):3965-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Jul;106(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20338950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Feb;65(3):368-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21265891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21499260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jan;1817(1):209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Oct 15;439(2):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jan;1817(1):26-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21835158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jan;1817(1):66-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21864501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jan;1817(1):13-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21907181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Feb;158(2):930-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22114096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Nov 25;254(22):11202-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">227862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22912689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:609-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2013;82:577-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Jul 5;265(19):10865-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2358445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26688-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23900844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Jul;55(7):1276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24850839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2014 Oct 16;588(20):3751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25171861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25331882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1847(2):276-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25481108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):262-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25587003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Sep;1847(9):900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25615587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Apr;82(2):337-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25711437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Feb;170(2):821-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26644506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jan 12;6:1261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26793230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 16;7:168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26909098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 May 18;534(7605):69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2016 Aug;12(8):586-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27272565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2224-2229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28193857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2988-2993</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28265052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Aug 25;357(6353):815-820</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28839073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Jun 25;263(18):8972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3288627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1965 Jul;54(1):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5216351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1967 Dec;35(3):553-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6064365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1984 Aug;99(2):481-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6378924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Jul 5;1143(2):113-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8318516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 May 20;36(20):6178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9166790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1998 Jul 15;355(2):181-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9675025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Sep 15;17(18):5286-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9736608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Nov 6;273(45):29315-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9792631</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Garcia Cerdan, Jose G" sort="Garcia Cerdan, Jose G" uniqKey="Garcia Cerdan J" first="José G" last="García-Cerdán">José G. García-Cerdán</name>
</region>
<name sortKey="Francis, Matthew B" sort="Francis, Matthew B" uniqKey="Francis M" first="Matthew B" last="Francis">Matthew B. Francis</name>
<name sortKey="Francis, Matthew B" sort="Francis, Matthew B" uniqKey="Francis M" first="Matthew B" last="Francis">Matthew B. Francis</name>
<name sortKey="Furst, Ariel L" sort="Furst, Ariel L" uniqKey="Furst A" first="Ariel L" last="Furst">Ariel L. Furst</name>
<name sortKey="Garcia Cerdan, Jose G" sort="Garcia Cerdan, Jose G" uniqKey="Garcia Cerdan J" first="José G" last="García-Cerdán">José G. García-Cerdán</name>
<name sortKey="Mcdonald, Kent L" sort="Mcdonald, Kent L" uniqKey="Mcdonald K" first="Kent L" last="Mcdonald">Kent L. Mcdonald</name>
<name sortKey="Niyogi, Krishna K" sort="Niyogi, Krishna K" uniqKey="Niyogi K" first="Krishna K" last="Niyogi">Krishna K. Niyogi</name>
<name sortKey="Niyogi, Krishna K" sort="Niyogi, Krishna K" uniqKey="Niyogi K" first="Krishna K" last="Niyogi">Krishna K. Niyogi</name>
<name sortKey="Niyogi, Krishna K" sort="Niyogi, Krishna K" uniqKey="Niyogi K" first="Krishna K" last="Niyogi">Krishna K. Niyogi</name>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Schunemann, Danja" sort="Schunemann, Danja" uniqKey="Schunemann D" first="Danja" last="Schünemann">Danja Schünemann</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000202 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000202 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31358635
   |texte=   A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31358635" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020